
International Journal of Computer Trends and Technology Volume 72 Issue 9, 57-62, September 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I9P110 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Comparative Analysis of Native vs React Native

Mobile App Development

Naveen Chikkanayakanahalli Ramachandrappa

Lead Mobile Development and Quality Engineer, Texas, USA.

Corresponding Author : accessnaveen@gmail.com

Received: 24 July 2024 Revised: 25 August 2024 Accepted: 16 September 2024 Published: 30 September 2024

Abstract - In the rapidly evolving digital landscape, developing mobile applications has become crucial for businesses seeking

to maintain competitive advantage. A significant challenge faced by developers is choosing the optimal approach between native

development and cross-platform frameworks like React Native. Despite the increasing prevalence of cross-platform solutions,

there is a noticeable gap in comprehensive, comparative studies that address the practical implications of these development

choices. This paper aims to bridge this research gap by providing a thorough comparative analysis of native versus cross-

platform development frameworks. Specifically, it examines critical factors such as performance, scalability, cost, and user

experience. Through systematic experimentation with sample applications and detailed data analysis, including charts and

graphical representations, this study seeks to offer actionable insights for developers. By highlighting the strengths and

limitations of each approach, the paper intends to guide developers in selecting the most suitable development method tailored

to their specific project needs.

Keywords - Cross-platform development, Native app development, Mobile app performance, React native, User experience.

1. Introduction
 Mobile applications have revolutionized business

operations, and as smartphone usage continues to surge, the

need for top-tier apps is at an all-time high. Choosing between

native app development and a cross-platform approach like

React Native can greatly influence a project's outcome. Native

apps, tailored specifically for iOS or Android, have

traditionally set the benchmark in mobile development,

providing unmatched performance and seamless integration

with platform-specific functionalities. Meanwhile, the

growing popularity of cross-platform frameworks such as

React Native offers the potential for quicker development

timelines and cost efficiency through the reuse of code across

multiple platforms.

2. Research Objective
 The goal of this research is to conduct a systematic

comparison between native mobile app development and

React Native development across various key dimensions:

performance, development speed, user experience, cost, and

scalability. By creating and evaluating two identical

applications, one built natively and the other using React

Native, this study seeks to offer practical insights that can

inform development decisions in different scenarios.

3. Scope and Limitations
 This research centers on the technical and experiential

elements of mobile app development for iOS and Android

platforms. It intentionally excludes other cross-platform

frameworks, such as Flutter or Xamarin, and does not explore

non-technical aspects like market trends or user

demographics. The findings are derived from specific case

studies and may not be universally applicable to all types of

applications.

4. Historical Context of Mobile Development
 The history of mobile development began with the advent

of smartphones, where the only feasible approach was

platform-specific development. As technology progressed,

hybrid and cross-platform frameworks emerged, offering new

options that aim to improve efficiency and lower costs.

5. Native Development
 Native development refers to the process of designing

mobile applications specifically for a single platform, using

that platform's proprietary programming languages and

development tools.

For iOS, this often involves the use of Swift or Objective-

C, while Android apps are usually built with Kotlin or Java.

Native apps are known for their excellent performance

because they interact directly with the platform’s APIs and

features, bypassing any intermediary layers. However, this

approach typically requires separate development teams for

each platform, which can lead to higher expenses and longer

development times.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Naveen Chikkanayakanahalli Ramachandrappa / IJCTT, 72(9), 57-62, 2024

58

5.1. Advantages of Native Development

5.1.1. Performance:

Native applications are designed to fully leverage a

device's hardware and software capabilities, resulting in

applications that are faster and more responsive [3][8][9].

5.1.2. User Experience:

Developing natively allows for adherence to platform-

specific design standards, which leads to a more intuitive and

fluid user experience [3][8][9].

5.1.3. Access to Platform-Specific Features:

Native development provides direct access to platform-

specific features like GPS, camera, and push notifications,

enhancing the app's functionality [3][8][9].

5.2. Disadvantages of Native Development

5.2.1. Development Cost and Time:

Creating and maintaining separate codebases for different

platforms can be both time-consuming and expensive.

5.2.2. Complexity:

Handling two separate codebases requires specialized

expertise and can add complexity to both the development and

maintenance processes.

6. React Native Development
 React Native, developed by Facebook, is a popular

framework for building cross-platform mobile applications

using JavaScript and React.

Unlike hybrid frameworks that depend on web

technologies, React Native enables the creation of true native

components, offering a blend of native performance with the

advantages of cross-platform development.

By employing React Native, developers can use a single

codebase to create apps for both iOS and Android,

significantly reducing both development time and costs [5][7].

6.1. Advantages of React Native Development

6.1.1. Quick Development:

The use of a unified codebase enables developers to

simultaneously create applications for both iOS and Android,

accelerating the development process [5][7].

6.1.2. Cost Savings:

By reducing the necessity for separate development teams

for different platforms, React Native helps lower overall

development expenses [5][7].

6.1.2. Community and Ecosystem:

React Native benefits from a robust community and an

extensive range of libraries and tools, which can significantly

speed up development and enhance functionality.

6.2. Limitations of React Native Development

6.2.1. Performance:

Although React Native provides performance that is close

to native apps, it may not fully match the speed and

responsiveness of applications developed specifically for each

platform, particularly for complex or resource-heavy tasks

[5][7].

6.2.2. Platform-Specific Customization:

Tailoring applications for specific platform features can

add complexity and may necessitate the use of native modules,

which can slightly undermine the advantages of maintaining a

single codebase [5][7].

7. Research Study
 This study utilizes a mixed-methods approach, integrating

both quantitative and qualitative data to provide a

comprehensive comparison of native app development versus

React Native development.

To ensure a fair and consistent evaluation, two identical

applications were developed, one using native technologies

and the other using React Native.

7.1. Development Environment

7.1.1. Native Development:

• iOS: Developed using the Swift programming language

within the Xcode Integrated Development Environment

(IDE).

• Android: Created with the Kotlin programming language

using Android Studio as the IDE.

• React Native Development:

Framework: React Native with JavaScript.

Tools: Visual Studio Code, React Native CLI, and Expo for

testing purposes [3][5][7][8][9].

7.2. Application Features

To ensure uniformity, both applications were designed

with the same set of features:

7.2.1. User Authentication:
Implementation of social login options, including Google

and Facebook.

7.2.2. Data Storage

Utilization of both local and cloud-based databases for

data management.

7.2.3. Real-Time Notifications:

Support for push notifications to provide users with real-

time updates.

7.2.4. Camera Access:

Integration with the device’s camera to enable image

capture and upload.

Naveen Chikkanayakanahalli Ramachandrappa / IJCTT, 72(9), 57-62, 2024

59

7.2.5. Offline Mode

Capability to operate without an internet connection by

leveraging local storage.

7.3. Metrics for Evaluation

The following metrics were chosen to provide a thorough

comparison:

7.3.1. Performance Metrics

• Assessment of both cold start and warm start durations.
• Measurement of CPU activity during different states,

including idle, active processing, and background tasks.
• Evaluation of memory usage under normal operating

conditions and peak loads [2][6].
• Analysis of battery consumption during prolonged use

[2][6].

7.3.2. Development Speed

• Duration required to complete the initial build of both

application

• Time spent on debugging, testing and deploying the

applications.

7.3.3. User Experience (UX)

• Evaluation of how well the app aligns with platform-

specific user interface standards.

• Responsiveness and fluidity of the UI.

• Ratings were collected from user surveys to gauge overall

satisfaction.

7.3.4. Cost Analysis

• Initial development cost (including resources and labor)

• Costs incurred over six months for ongoing maintenance

[4].

• Expenses associated with integrating updates and adding

new features [4].

7.3.5. Scalability

• Ease of adding new features to the application.

• Capability to adjust to future platform updates.

• Evaluation of performance when handling increased user

numbers and data volumes [1].

7.4. Detailed Native Development Process

7.4.1. iOS Development with Swift
For the iOS application, Swift was utilized as the

programming language, renowned for its efficiency and

modern syntax, which simplifies the development and

maintenance of high-quality code. Xcode served as the

primary Integrated Development Environment (IDE), offering

a comprehensive set of tools for coding, debugging, and

testing [3][8].

• UI/UX Design: Adherence to the iOS Human Interface

Guidelines ensured that the user experience was

consistent with native iOS applications.

• Performance Optimization: Xcode’s Instruments tool was

employed to fine-tune the app, helping to pinpoint

performance issues and memory leaks [3][8].

7.4.2. Android Development with Kotlin

Kotlin was selected for the Android application due to its

advanced features, safety, and seamless interoperability with

Java. Android Studio was the chosen IDE, providing extensive

support for coding, layout design, and testing [3][9].

• UI/UX Design: The application followed Material Design

principles to maintain a consistent and user-friendly

experience on Android devices.

• Performance Optimization: Android Profiler was utilized

to monitor CPU usage, memory consumption, and battery

efficiency [3][9].

7.5. Detailed React Native Development Process

 The React Native application was developed using

JavaScript and React, allowing for a unified codebase that

supports both iOS and Android platforms with minimal

platform-specific adjustments [5][7].

7.5.1. UI/UX Design

React Native’s support for platform-specific components

was utilized to create an interface that closely mimics the

native experience on both iOS and Android [5][7].

7.5.2. Performance Optimization

Tools such as React Native Debugger and Flipper were

used to analyze app performance, identify potential issues, and

refine the code [2].

7.5.3. Challenges and Solutions in React Native Development

A significant challenge in React Native development was

ensuring that the application could fully utilize platform-

specific features while maintaining a unified codebase.

This challenge was addressed by implementing native

modules as needed, which allowed the app to interact with

platform-specific APIs without sacrificing performance

[5][7].

7.6. Measurement and Data Collection

To gather accurate and reliable data, a mix of automated

tools and manual methods was used to evaluate performance,

development speed, and user experience.

7.6.1. Performance Metrics

• iOS: Xcode Instruments was utilized to analyze CPU

performance, memory usage, and battery efficiency [2].
• Android: The Android Profiler was employed to monitor

CPU and memory utilization, along with battery

performance [2].

• React Native: The React Native Debugger was used to

assess app performance across both iOS and Android

platforms [2].

Naveen Chikkanayakanahalli Ramachandrappa / IJCTT, 72(9), 57-62, 2024

60

7.6.2. Development Speed

• Development time, including hours spent on coding,

debugging, and deploying, was tracked using time

management software.

7.6.3. User Experience

• Beta testing was carried out with 40 participants to

evaluate aspects such as UI/UX design, responsiveness,

and overall user satisfaction.

• Feedback was gathered through user surveys and

interviews to obtain qualitative insights into the user

experience.

7.7. Data Analysis Techniques

Quantitative performance data was examined through

statistical techniques to detect significant variances between

native and React Native applications. Meanwhile, qualitative

user feedback was systematically coded and categorized to

uncover recurring themes and valuable insights.

8. Results and Analysis
8.1. Performance Analysis

8.1.1. Load Time
Load times were assessed for both cold starts (when the

app is opened for the first time) and warm starts (when the app

is reopened after being closed). Native applications exhibited

quicker load times on both platforms, with iOS native apps

showing the fastest load times, attributed to the efficiency of

Swift.

8.1.2. CPU and Memory Usage
Native apps generally had lower CPU usage and memory

consumption, especially during demanding operations such as

image processing and real-time data synchronization. React

Native apps, while still efficient, exhibited slightly higher

resource usage due to the JavaScript bridge, which functions

as an intermediary between the JavaScript code and the native

components.

8.1.3. Battery Efficiency

Battery consumption was evaluated during extended

periods of app use, and native apps demonstrated superior

battery efficiency. This efficiency is due to their deeper

integration with and optimized utilization of platform-specific

APIs, which enable native apps to manage resources

effectively.

8.2. Development Speed

8.2.1. Time to Develop

React Native facilitated quicker initial development

because of its shared codebase, enabling the app to be

completed in roughly 70% of the time needed for native

development. Nonetheless, extra time was required for

platform-specific customizations, which slightly diminished

the overall time efficiency.

Fig. 1 Performance Metrics: Native vs React Native

Fig. 2 Development speed: Native vs React Native

8.2.2. Debugging and Deployment

React Native's hot-reloading capability notably shortened

debugging times by allowing developers to view changes

instantly.

Additionally, the use of a single codebase simplified the

deployment process for both platforms, reducing the need for

distinct deployment procedures.

8.3. User Experience

8.3.1.UI/UX Consistency
Native apps offered a more refined user experience,

adhering closely to platform-specific design guidelines. The

UI transitions were more fluid, and the responsiveness was

notably better, especially on iOS devices.

Although React Native apps had a similar visual appeal,

they occasionally showed minor discrepancies in UI behavior

across different platforms, which could impact the overall user

experience.

8.3.2. Responsiveness

Native apps generally demonstrated superior

responsiveness, particularly during scenarios involving

intensive animations and complex interactions. While React

Native performed well, it did not fully match the smoothness

of native apps.

Naveen Chikkanayakanahalli Ramachandrappa / IJCTT, 72(9), 57-62, 2024

61

Fig. 3 User Experience: Native vs React Native

8.3.3. User Satisfaction

Survey results revealed that users slightly favored native

apps for their superior performance and seamless experience.

Despite this preference, the differences in user satisfaction

were not pronounced, and many users valued the consistency

and design of the React Native app.

8.4. Cost Analysis

8.4.1. Development Cost

React Native's unified codebase resulted in notable cost

savings, reducing overall development expenses by around

30% compared to building separate native apps for iOS and

Android. This reduction in cost was mainly due to code reuse

and decreased requirements for specialized teams.

8.4.1. Maintenance and Updates

Maintenance expenses were generally lower with React

Native, as updates could be implemented across both

platforms simultaneously. However, the need for native

modules and platform-specific adjustments might lead to

increased costs over time.

8.4.2. Long-Term Costs

Although React Native offers lower initial development

and maintenance costs, long-term expenses might rise if

frequent platform updates or complex native integrations

become necessary. Conversely, while native apps entail higher

upfront development costs, they may result in lower long-term

expenses due to their inherent stability and deeper integration

with the platform.

8.5. Scalability

8.5.1. Feature Scalability

Native apps exhibited superior scalability when

incorporating new features, especially those specific to the

platform. Their direct access to platform APIs without

additional layers of abstraction facilitated a smoother

integration process for new functionalities.

Fig. 4 Cost Analysis: Native vs React Native

Fig. 5 Scalability: Native vs React Native

8.5.2. Platform Updates

React Native encountered more difficulties in adapting to

significant platform updates. Although updates from the React

Native community and Facebook do support new platform

features, there is often a lag compared to native development,

which can result in compatibility challenges.

8.5.3. Performance Under Load

Performance testing under increased user loads and data

volumes revealed that native apps maintained more consistent

performance, efficiently managing higher traffic and larger

data sets. React Native apps also performed well but exhibited

some strain under peak loads, particularly in situations

involving real-time data processing.

9. Implications for Developers
The decision between using native development or React

Native should be based on the project’s specific requirements.

Native development is best suited for applications demanding

high performance, extensive integration with platform

features, and an exceptional user experience. It is particularly

effective for complex applications, such as high-end games or

large-scale enterprise solutions, where performance and

Naveen Chikkanayakanahalli Ramachandrappa / IJCTT, 72(9), 57-62, 2024

62

responsiveness are paramount. Conversely, React Native

provides considerable benefits in terms of faster development

and cost efficiency. It is ideal for projects that need a quicker

launch, have budget constraints, or aim to serve a broad

audience on both iOS and Android platforms. However,

developers should anticipate potential issues with

performance optimization and customization for different

platforms.

10. Future Trends and Considerations
As the field of mobile development advances, emerging

frameworks and technologies such as Flutter and Kotlin

Multiplatform are presenting themselves as viable alternatives

to both native development and React Native. These new tools

aim to overcome some of the challenges highlighted in this

study, providing developers with additional methods for

creating high-quality mobile applications. Future research

should investigate these technologies and assess their

influence on the development workflow.

11. Conclusion
This research has explored the benefits and limitations of

both native and React Native development methods. Native

development is often considered the optimal approach for

achieving high performance and an excellent user experience.

On the other hand, React Native provides a compelling option

for projects that prioritize cost efficiency and faster

development cycles. Choosing between these two strategies

should involve a careful evaluation of the project's specific

requirements, available resources, and long-term goals.

As the landscape of mobile app development progresses,

developers will encounter an expanding array of tools and

frameworks, each with its own set of advantages. Staying

informed about the latest industry trends and technological

advancements will enable developers to make more strategic

choices that are better aligned with their project needs and

current industry standards.

References
[1] Shah Rukh Humayoun et al., “Patterns for Designing Scalable Mobile App User Interfaces for Multiple Platforms,” Proceedings of the

28th International BCS Human Computer Interaction Conference (HCI 2014), Southport, UK, pp. 317-322, 2014. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Vivek Basavegowda Ramu, “Performance Testing and Optimization Strategies for Mobile Applications,” International Journal of P2P

Network Trends and Technology, vol. 13, no. 2, pp. 1-6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jakob Iversen, and Michael Eierman, Learning Mobile App Development: A Hands-on Guide to Building Apps with IOS and Android,

Pearson Education, Addison-Wesley, pp. 1-441, 2014. [Google Scholar] [Publisher Link]
[4] Ziema Mushtaq, and Abdul Wahid, “Cost Estimation for Mobile Application Development: Review,” IOSR Journal of Engineering,

vol. 8, no. 7, pp. 20-26, 2018. [Publisher Link]

[5] Emilio Rodriguez Martinez, React: Cross-Platform Application Development with React Native: Build 4 Real-world Apps with React

Native, Packt Publishing, pp. 1-182, 2018. [Google Scholar] [Publisher Link]
[6] Kire Jakimoski, and Anita Andonoska, “Performance Evaluation of Mobile Applications,” Proceedings of the XIV International

Conference ETAI 2018, Struga, Republic of Macedonia, 2018. [Google Scholar]

[7] React Native, 2024. [Online]. Available: https://reactnative.dev/docs/performance

[8] Apple Developer. [Online]. Available: https://developer.apple.com/ios/

[9] Android Developer. [Online]. Available: https://developer.android.com/

http://dx.doi.org/10.14236/ewic/HCI2014.51
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Patterns+for+Designing+Scalable+Mobile+App+User+Interfaces+for+Multiple+Platforms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Patterns+for+Designing+Scalable+Mobile+App+User+Interfaces+for+Multiple+Platforms&btnG=
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/HCI2014.51
https://doi.org/10.14445/22492615/IJPTT-V13I2P401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Testing+and+Optimization+Strategies+for+Mobile+Applications&btnG=
https://ijpttjournal.org/archives/ijptt-v13i2p401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Mobile+App+Development+A+Hands-on+Guide+to+Building+Apps+with+IOS+and+Android+%2C+Jakob+Iversen%2C+Michael+Eierman+&btnG=
https://www.google.co.in/books/edition/_/B6lKAgAAQBAJ?hl=en&sa=X&ved=2ahUKEwiqyqLex9iIAxVa-DgGHaEJEOYQ7_IDegQIDRAC
https://www.iosrjen.org/pages/volume8-issue7(part-3).html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=React%3A+Cross-Platform+Application+Development+with+React+Native+Build+4+Real-world+Apps+with+React+Native%2C++Emilio+Rodriguez+Martinez&btnG=
https://www.google.co.in/books/edition/React_Cross_Platform_Application_Develop/MZRRDwAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kire+Jakimoski%2C+and+Anita+Andonoska%2C+Performance+Evaluation+of+mobile+applications+development&btnG=
https://reactnative.dev/docs/performance
https://developer.apple.com/ios/

